
3.18 THE TUTORIALS

ZEIT USER MANUAL

Tutorial 4: Morphing

Morphing is a technique that takes two sequences, works out the differences between

them and, during playback, subtly changes the first sequence so that it sounds like the

second sequence.

Sequence morphing can be used to create long evolving passages that do not repeat

though the end result is always predictable and reproducible. If force-to-scale is switched

on then the notes generated will always be in the currently loaded scale.

How Does Morphing work?

Let’s choose a couple of simple examples. To begin, we need to specify a source sequence

and a destination sequence. The source sequence is always the currently selected

sequence whilst the destination sequence must reside in the battery-backed memory.

Let’s say that the source sequence is only four notes long and consists of the notes C, D,

E and G. We’ll restrict the notes in the destination sequence to four notes as well: D, C, A

and D.

When you start the morpher, ZEIT works out the difference between the note pitches and

the note velocities in the source sequence and the notes pitches and note velocities in the

destination sequence (The Controller values are not changed).

Let’s consider the first note in each sequence. In the source sequence this is the note C.

In the destination sequence, this is the note D. The difference between the two notes is

two semitones. The destination note, D, is higher in pitch than the source note, C and so

the pitch change is going up the scale. We call this a positive change.

Now look at the second note in each sequence. In the source sequence this is the note D.

In the destination sequence this is the note C. The difference between the two notes is

again two semitones but, in this instance, the destination note is below the source note

and so the direction of change is negative.

If we repeat this process for each note in the sequence then we can construct a table of

values:

Source C3 D3 E3 G3

Destination D3 C3 A3 D4

Difference 2 2 5 7

Direction + - + +

To begin the process, the source sequence plays through once. At the end of this pass,

ZEIT calculates a new value for the note pitch in each step. The modified sequence plays

THE TUTORIALS 3.19

ZEIT USER MANUAL

through once and ZEIT again updates the note pitch for each step. This process repeats

until the morphed source sequence is identical to the destination sequence.

So, what would the above sequence sound like and how many times would the sequences

play through until the source and the destination sequence sound the same?

The time taken before the source sequence sounds like the destination sequence is based

on the largest difference in pitch between the source and destination sequence. In the

above example, the largest difference is 7 semitones and so the time taken for the source

sequence to match the destination sequence would be (seven + one) passes, ie. 8

passes.

Let’s assume that force-to-scale is not enabled.

Pass Step No.

1 2 3 4

1 – Source Sequence C D E G

+1 -1 +1 +1

2 C# C# F G#

+1 -1 +1 +1

3 D C F# A

0 0 +1 +1

4 D C G A#

0 0 +1 +1

5 D C G# B

0 0 +1 +1

6 D C A C

0 0 0 +1

7 D C A C#

0 0 0 +1

8 - Destination Sequence D C A D

So, what do we hear? On the first pass through, ZEIT would play the source sequence, C

D E G. On the second pass through, ZEIT adds one semitone to the first note taking the C

to a C#. The second note moves downwards in pitch from D to C#. The third note moves

up in pitch from E to F and the fourth note also moves up in pitch from G to G#. So, on

the second pass through we would hear the morphed sequence C# C# F G#. And so on,

until the source sequence sounds like the destination sequence.

Ok, let’s try using the same source and destination sequences except on this occasion,

we’ll switch on force-to-scale. Force-to-scale takes the incoming note and matches it

against the current scale. If the note is in that scale then the note is not affected by

force-to-scale. However, if the note is not in the current scale then the force-to-scale

processor looks for the nearest note in the scale below the incoming note. For example,

if you passed a C to the force-to-scale unit and the current scale was C major then the

3.20 THE TUTORIALS

ZEIT USER MANUAL

note would be unaffected. If instead, you passed a C# to the force-to-scale unit then it

would output the nearest note below C# which is C.

Pass Step No.

1 2 3 4

1 – Source Sequence C D E G

+1 -1 +1 +1

2 C# C C# C F F G# G

+1 -1 +1 +1

3 D D C C F# F A A

0 0 +1 +1

4 D D C C G G A# A

0 0 +1 +1

5 D D C C G# G B B

0 0 +1 +1

6 D D C C A A C C

0 0 0 +1

7 D D C C A A C# C

0 0 0 +1

8 - Destination Sequence D D C C A A D D

What’s happening here? As before, on the first pass through, the source sequence plays C

D E and G. On the second pass, the morpher adds one semitone to the first note, taking

the C to a C#. However, the note C# isn’t in the scale of C major and so this is forced to

the new pitch of C, so there’s no apparent change in pitch. However, with the second note

in the sequence, the D is pitched downwards to C# and, as we’ve already seen, this isn’t

in the key of C major. Consequently, the D note is also forced to the note C. In the third

note, the E is pitched upwards to F and, since F is in the scale of C major, then the force-

to-scale function has no effect. Finally, the G is pitched upwards to G# and, as before, the

force-to-scale function will re-pitch this note at G.

So, on the first pass we’ll hear the source sequence C D E and G. On the second pass,

we’ll hear C C F and G (as shown in bold font in the table above).

Let’s look at what happens on the third pass through. The first note, which is C#, is

pitched upwards by a semitone to the note D. Here, the force-to-scale function has no

effect. The second note, which was C#, is pitched downwards by one semitone to C and,

again, the force-to-scale function has no effect. The third note, F, is pitched upwards to

F# but modified by the force-to-scale function back to the original F. The fourth note,

which was G#, is pitched upwards and becomes A. Hence, on the third pass, our morphed

sequence plays D C F A.

Try setting this up for yourself using the note editor to set the various parameters.

THE TUTORIALS 3.21

ZEIT USER MANUAL

Note Velocities

Are the note velocities affected by the morphing function? Yes, they are.

Let’s stick with the current example where the source sequence is C D E G and the

destination sequence is D C A D but, here, we’ll give the notes a velocity component. The

velocity components are shown in parentheses.

Source C3 (50) D3 (60) E3 (70) G3 (80)

Destination D3 (50 C3 (74) A3 (98) D4 (38)

Velocity difference 0 +14 +28 -42

Direction 0 + + -

In the first note, there’s no difference between the velocity values. In the second note,

the source note D is played with a velocity of 60 and the destination is played with a

velocity of 74. So, the difference between the two notes is +14. In the third note, the

source velocity is 70 and the destination velocity is 98 and so there is a difference of +28.

Finally, in the fourth note, the source note is played with a velocity of 80 and the

destination with a velocity of 38 and so there is a difference of –42.

How are the note velocities morphed? Well, we saw in the previous example where force-

to-scale was enabled that the total number of passes required to morph the source

sequence into the destination sequence was 7. However, to morph the velocity

components, we require one less pass and so we divide the velocity difference by the

number of passes minus 1. So, in this example, the number of passes required for the

velocity is 6.

And so the table above now looks like this:

Source C3 (50) D3 (60) E3 (70) G3 (80)

Destination D3 (50) C3 (74) A3 (98) D4 (38)

Velocity difference 0 +14 +28 -42

Direction 0 + + -

Velocity Increment 0 12/6 = 2 24/6 = 4 42/6=7

Now, what would this sound like?

1 2 3 4

1 C(50) D(60) E(70) G (80)

2 D(50) C(62) F(74) A(73)

3 D(50) C(64) F(78) A(66)

4 D(50) C(66) G(82) B(59)

5 D(50) C(68) G(86) C(52)

6 D(50) C(70) A(90) C(45)

7 D(50) C(72) A(94) D(38)

3.22 THE TUTORIALS

ZEIT USER MANUAL

As the morph progresses then we’ll hear the loudness of first step remain exactly the

same whereas the second and third steps will gradually increase in volume and the fourth

step will slowly decrease in volume.

Flipping

Suppose now that the source sequence and the destination sequence have different clock

rates, different directions and different lengths. What effect does the morpher have on

these parameters?

Let’s look at a longer sequence.

Step Number 1 2 3 4 5 6 7 8

Source C C C D E F C D

Destination E E D B A A F F

Difference +4 +4 +2 +9 +5 +4 +5 +1

The maximum difference in pitch occurs at step four, where the source pitch is D and the

destination pitch is B. The difference is 9 semitones, which means that the morph function

will take (9 + 1) passes to complete.

We’ll assume, for simplicity, that the source and destination sequences have the same

directional settings. Here, both sequences are moving in the forwards direction.

1 2 3 4 5 6 7 8

1 Source C C C D E F C D

2 C# C# C# D# F F# D# D#

3 D D D E F# G D E

4 D# D# D# F G G# D# F

5 E E E F# G# A E F

6 E E E G A A F F

7 E E E G# A A F F

8 E E E A A A F F

9 E E E A# A A F F

10 Destination E E E B A A F F

Now, let’s change the direction of the destination sequence so that it’s now moving

backwards.

The most logical place to flip the direction and/or clock rate is at the mid-point in the

morph and the midpoint is calculated by dividing the total number of passes by 2. If the

total number of passes was 10 then the mid-point would fall at the end of pass 5, which is

where the flip would take place.

THE TUTORIALS 3.23

ZEIT USER MANUAL

When the morph begins, playback will be in the forwards direction. After pass number 5,

the playback direction will change to that of the destination sequence i.e. backwards.

What effect will this flip have on the above table? Let’s see.

1 2 3 4 5 6 7 8

1 Source C C C D E F C D

2 C# C# C# D# F F# D# D#

3 D D D E F# G D E

4 D# D# D# F G G# D# F

5 (flip!) E E E F# G# A E F

6 E E E G F F A A

7 E E E G# F F A A

8 E E E A F F A A

9 E E E A# F F A A

10 Destination E E E B F F A A

Suppose the source sequence is clocked at a rate of 2x and the destination sequence is

clocked at a rate of 4x. The morph would begin at the source clock rate of 2x. It would

remain at this clock rate until the end of pass 5, upon which it would change to the

destination clock rate of 4x.

Active and Muted Steps

Let’s use the previous example, this time, with active and muted steps:

Step Number 1 2 3 4 5 6 7 8

Source C C C D E F C D

Active Y Y Y Y Y Y Y N

Destination E E D B A A F F

Active Y Y N N Y Y N N

Difference +4 +4 +2 +9 +5 +4 +5 +1

Flip pass 3 3 2 5 3 3 3 2

First, let’s see what the sequence would sound like if all of the steps were active. For

simplicity, force-to-scale is not enabled and the shaded cells indicate that the step has

reached its target pitch.

3.24 THE TUTORIALS

ZEIT USER MANUAL

1 2 3 4 5 6 7 8

1 (Source) C C C D E F C D

2 C# C# C# D# F F# D# D#

3 D D D E F# G D E

4 D# D# D# F G G# D# F

5 E E E F# G# A E F

6 E E E G A A F F

7 E E E G# A A F F

8 E E E A A A F F

9 E E E A# A A F F

10 E E E B A A F F

As before, the maximum difference in pitch occurs at step four, where the source pitch is

D and the destination pitch is B and the difference, in semitones, is 9.

However, step four in the destination sequence is muted and so ZEIT must decide when

to mute step four. ZEIT works out the difference in pitch between the source step and the

destination step and divides this value by two, adding one if the total number of passes is

an odd number. So, step four will play in pass one, two, three and four but will be muted

on the fifth pass.

What would playback sound like? In the following table, the step number runs horizontally

and the pass number runs vertically. As before, the greyed-out boxes indicate steps

where the morphed pitch matches the destination pitch. The blacked-out boxes indicate

muted steps.

1 2 3 4 5 6 7 8

1 C C C D E F C

2 C# C# C# D# F F# D#

3 D D D E F# G D

4 D# D# F G G#

5 E E F# G# A

6 E E A A

7 E E A A

8 E E A A

9 E E A A

10 E E A A

So, the morphed source sequence will be the same as the destination sequence after only

6 passes and so the entire morph operation will be considerably shorter.

Skipped Steps

Skipped steps require careful consideration. Let’s look at the previous example again, this

time replacing some of the muted steps with skipped steps.

THE TUTORIALS 3.25

ZEIT USER MANUAL

Step Number 1 2 3 4 5 6 7 8

Source C C C D E F C D

Active Y Y Y Y Y Y Y N

Skipped N N N Y N N N Y

Destination E E D B A A F F

Active Y Y N N Y Y N N

Skipped N N Y N N N Y N

Difference +4 +4 +2 +9 +5 +4 +5 +1

Flip pass 3 3 2 5 3 3 3 2

And the sequence would play as:

1 2 3 4 5 6 7 8

1 C C C E F C

2 C# C# C# F F# D#

3 D D D F# G D

4 D# D# F G G#

5 E E G# A

6 E E A A

Target pitch attained

Muted step

Skipped step

Looping and Morph Modes

In normal circumstances, a morph would simply begin with the source sequence and

proceed until the source sequences sounds the same as the destination sequence. Once

the morph has completed, the destination sequence will play until the sequencer itself is

stopped. However, you can make a morph restart simply by enabling loop mode.

When looping is on, the source sequence is morphed until it matches the destination

sequence. When it matches the destination sequence, the process is reversed so that the

destination sequence becomes the source sequence. The morphing process then begins to

work back towards what was the original source sequence. We've found that this method

creates some very smooth, evolving passages.

Morph Dwell is the number of times the destination sequence plays once the morph

process has completed. If this parameter is set to, say, three then the source sequence

will morph until it matches the destination sequence. The destination sequence will then

play three times before restarting the morph back towards the original source sequence.

3.26 THE TUTORIALS

ZEIT USER MANUAL

Hints and Tips

Morphing is a great way of finding new sequences that are closely related to the

sequences you’re currently working on. We’ve used it many, many times to create a large

number of subtle variations based around an original theme.

To do this, pick your source and destination sequences, start the Morpher with the data

wheel and hit the Play button. When you hear a sequence variation that you like, simply

turn the data wheel one step anti-clockwise to stop the morphing process at that

point. The sequence will continue to play as normal and will not be over-written by the

next progression until you start the morpher running again. This leaves you with time to

manipulate and save the sequence as required.

Restarting the Morpher will start the process off again with your original sequences.

Some Morphing questions

What happens to the Controller Data?

The governing factor in the morphing process is always the note values. The controller

values are generated and processed without modification. However, you can still change

them from the front panel controls, the low frequency oscillator, the sweep generator etc.

Can I have more than one morph running at one time?

Unfortunately, this is not currently possible. Morphing is very hungry on processor

resources and, at present, ZEIT is not able to generate more than one morph. This may

change in future software revisions.

Morphing only seems to work with the Forward, Reverse and Pendulum directions?

Yes, this is true. As stated, morphing is a complicated process. Adding randomised and

algorithmic directions to the process takes up too many CPU resources. Again, this may

be addressed in future software revisions.

