Introduction 1

INTRODUCTION

In the Beginning...

In the summer of 2000, | found myself sitting in a recording studio in Newcastle
surrounded by the very latest in state-of-the-art technology. We were recording
our second full-length album and this was the final step in a 5-year journey.
However, all was not well. After 5 years, | was bored with the music, bored with the

sounds and desperate to move on to any number of new projects.

The barrier, it seemed, was the compositional process itself. Frankly, I'm not a
particularly gifted musician. I don’t have the chops to improvise new music and
what | produce is generally found through accident rather than by design. Equally,
I found myself getting locked into one particular style, one particular groove and |
began to yearn for a faster, more elegant process where the musician wasn’t
restricted to one formula and one style. | wanted to get back to just making music
as a process rather than with an end product in mind, a process where you could

just make music as quickly as you could imagine it.

To cut a long story short, | began to imagine a machine that could take care of the
areas that | found difficult. My keyboard technique couldn’t really be classed as a
technique at all and so | wanted something that could play quickly and accurately

but also make it simple to improvise new ideas around an existing theme. | wanted

ZEIT USER MANUAL

2 Introduction

a machine where | could test ideas quickly and without the limitations of the

normal computer interface.

In short, | started to imagine ZEIT.

I wrote down all of the functions and properties that such a machine would have
and then | went looking to see if it already existing. After all, |1 didn’'t want to
reinvent the wheel. The sequencers that | found didn’t really address my needs
completely. They filled in part of the picture but none of them combined ease of

use with functionality. This was the true starting point for the ZEIT project.

With the help of some good friends, Paul Maddox and Paul Nagle, we began to specify
what ZEIT would do and how it would do it. Paul Maddox designed the
microprocessor board that would control the machine, Paul Nagle added his own

thoughts and ideas to my basic specification.

The first tangible result of this collaboration was a machine we christened ATEM. It
was a four-track, menu driven machine meant as a proof of concept. It worked but
the user interface was a disaster with far too many menus and key combinations
to make the instrument an effective musical tool. Clearly, we needed to press

forward with the next logical step, the ZEIT Step Sequencer itself.

In ZEIT we wanted to create a tool that was, first and foremost, a solid and reliable
workhorse. It would perform one task and it would perform it well. And ZEIT also
had to be completely intuitive to use. Equally at home in the studio or on stage, all
of the major controls had to be available at all times with the status of each
parameter always clearly visible. No weird and wonderful button combinations
would be required to get from A to B. One button, one function became a kind of
mantra whilst we were designing the instrument. Wherever possible, menu options
had to be displayed in plain English instead of a multiplicity of three letter

acronyms.

We also decided that ZEIT would evolve naturally over time. Software updates and
bug fixes would arrive at regular, routine intervals. Additions to the specification
would only be made if sufficient users asked for a set of features and the user base
agreed that there was a real need for a new function, rather than something that

was just crudely bolted on as an afterthought.

In short, we wanted to create an instrument, which like its analogue forebears
would reward the musician for many, many years to come, a source of endless

inspiration in a world dominated by here today, gone tomorrow instruments.

ZEIT USER MANUAL

Introduction 3

ZEIT took four years to develop. We set out to create a machine that would work
with the musician as a creative tool, a machine that would reduce the distance

between concept and execution as much as possible.
I believe we succeeded.

David Hughes, February 2006

Why a Hardware Sequencer?

Why choose a hardware sequencer when there are myriads of sleek, elegant, well-
specified software sequencers available on the market, often for little or no cost at

all?

Well, over the years, we've found that software sequencers, good though they are,
rarely measure up to their hardware-based counterparts. Most of the time, you can
work around their shortcomings but there are occasions when only a piece of

dedicated hardware will give you what you need to get the job done.

We reckon that the main advantages of hardware based sequencers are as follows

- timing integrity, ease-of-use and reliability.

1) Timing integrity

It almost goes without saying that any sequencer, be it software, hardware or a
combination of the two, must have absolute timing accuracy. I've met classically
trained musicians who can hear MIDI note delays of the order of a millisecond or
so. They trust their ears and their ears tell them that MIDI delays are

"unmusical" and "unnatural”.

With a software sequencer running on a host computer, the source of your timing
signals is usually a high-priority, interrupt-driven software routine and this routine
periodically tells the sequencer package to wake up and do something.
Consequently, the performance of your sequencer package is usually outside the
control of the programmers who wrote your sequencer package. More often than
not its performance is dictated by the demands placed upon host computer's

operating system.

Just stop for a moment and think about everything that your average PC has to do
just to stay running - poll the keyboard, check for network activity, look for e-mail,
figure out what the mouse is doing, update the display card etc. If that wasn't
enough, modern PC's (and Macs) boast specifications that were pure science

fiction just a decade ago. The modern PC is a highly sophisticated, extremely

ZEIT USER MANUAL

4 Introduction

versatile piece of equipment, which needs a large and complex operating system

to run it smoothly.

And all of this power and sophistication means that users are forever adding extra
bits of software to their system. Screen savers, network printers, Web Cams,
games. You hame it, your PC probably has it. Sure, the machine can cope, can't

it? It's not like checking e-mail takes up a huge amount of time, right?

Wrong! The more software you have installed on a machine then the more likely it
is that your precious MIDI timing signals will be pushed into a queue behind some
other system critical activity. And waiting in a queue for service is not the way to

run a music sequencer.

Most of the time, you might not notice a problem. Most of the time, you won't even
be aware that the sequencer skipped a clock or that a clock was late. But,
occasionally, the timing signals won't happen at exactly the right moment and the
sequencer will drop out of time with everything else. Then you'll notice. And if you
were trying to create an accurately timed, precisely driven piece of music then the

magic will have been lost. Completely.

Suppose now that you have a collection of drum machines and sequencers all
synced to your master PC. Usually, the main source of timing synchronisation is
MIDI clock signals, which are fundamentally a poor way of syncing two devices

but we're stuck with them.

MIDI clock signals - you gotta love them. Sometimes, they arrive in bursts, all
bundled up together. Sometimes they spread out. And your systems have to
respond to these changes in a manner that is deemed 'musical’. It's asking a lot.
Most of the time, this isn't down to the design of the software sequencer itself. It's

nearly always due to the operating system within the computer.

This is where accuracy counts most and this is where hardware sequencers really

score over software devices. Every time.

With ZEIT, timing signals always have the highest priority. When the system timer
expires it is serviced in less than 1 microsecond. (That's one millionth of a
second!) And timing signals are never pushed into a queue - they're always
processed immediately. The serial nature of MIDI means that notes are never
going to arrive precisely on time. However, ZEIT always tries to stream the note
information as smoothly as possible by using fast, efficient output buffers that are
serviced very quickly indeed - as soon as the previous character has cleared the
output transmitter. There’s no sitting around in a queue, waiting for a slice of the

processor’s valuable time.

ZEIT USER MANUAL

Introduction 5

2) Ease of use

Every software package l've ever used has suffered from a feature christened
"bloatware", that is, the tendency of software writers to add feature after feature to
a program without there being much tangible benefit to the end user. Remember
that 99% of users only utilise around 50% of a package's functionality - they

know enough to get by and that's it.

Think of it this way. In my word processor package, there's an on-screen icon
marked BOLD. How often do | use the on-screen icon marked BOLD? | don't. | use
a keystroke command, <CTRL-B>, to make the text bold. It's quicker and faster
than hunting for the icon marked BOLD. Equally, there's also a drop-down menu
that lets me set a line of text to BOLD too. How often do | use that feature?
Sometimes, during the final stages of editing. I'll wager you're much the same. I'd
really just prefer a button marked BOLD. And another button marked Italique,

another marked "Underline" etc.

That's the thing with software sequencers. They do too much. You have to think
too much if you want to use them. More features mean larger programs, which

means more code and, consequently, more bugs.

A sequencer is a tool. You use it to make music. It is reasonable to expect a PC
or a Macintosh to do just the same. Most professional musicians I've met have
insisted that the PC is kept as simple as possible. They recognize that simple =
reliable. And yet most of their dedicated studio machines have games installed, e-
mail running, screen savers, MSN messaging etc. And most are surprised, even

angry when their machines crash for no apparent reason.

In designing ZEIT, our mantra was "if you need to look in the manual then the
design is wrong!". The system is as simple and as complex as it needs to be.
Once you're familiar with it then you should never need to look in the manual

again. You just switch it on and play.

With ZEIT, the user interface is fixed and won't change. Software upgrades may be
released that will change small details but our personal assurance to you is that
the front panel won't suddenly change out of all recognition. We make the
functionality completely obvious and, as far as possible, we stick to our golden
rule of 'one function per key, one key per function'. A simple, elegant design with
no weird and wacky functions that only power users ever touch. No multiple
keystrokes or "Press this then this then that" key sequences. Switch it on and

press "play". That's all you need.

3) Reliability

ZEIT USER MANUAL

6 Introduction

A few years ago, | went to a demonstration of a software sequencer at a local high
street store. | won't mention the name of the company or the package for obvious

reasons. It was not their finest hour.

Two of this company's leading demonstrators hopped up on stage and proudly
declared, in front of a very large and highly attentive audience, that the latest
revision of their wonderful sequencer package was their best yet. It not only
surpassed all previous versions but every other sequencer on the market. It did
everything. It was the ultimate sequencer. You would need no other sequencer

tool.

They pressed "Start" and ... it crashed.

Attempts to restart the computer were met with curious blue screens. When the
computer did restart, it wouldn't load all of the software. Critically, the sequencer

package we'd all come to see wouldn't run.

And so everyone in the room sat around whilst the puzzled technical bods at the
front of the room called up equally puzzled technical bods at the service centre
and discussed possible fixes. Eventually, they did get the computer and the
software working and it certainly looked fantastic - very bright, very colourful,
feature rich and just absolutely wonderful in every way. Except that the
demonstrators couldn't remember how to use it and made all sorts of embarrassed
excuses about version creep and software updates and so forth. They tried this
option and that option and when users started asking questions from the floor, it
became clear that they just weren't familiar with the software package at all. This
was because the all-new, all-singing, all-dancing version had just been released

and it had very little in common with the previous release.

Now, just when you though life couldn't get any worse for these poor guys, the

computer crashed again, mid-demo.

Quite frankly, I'd had enough. I went home to my ancient and well worn Macintosh
266MHz G3, which was last updated in 1998, switched it on and got on with
finishing off a couple of tunes I'd just written. | still have version 3.01 of their
software sequencer. It's reliable, it works and it does everything | need ... except

step sequence, which is why | designed ZEIT.

Reliability is central to the philosophy behind ZEIT. Our main selling point is that
the sequencer is there when you need it. Switch it on and it works. It should never
crash, for any reason. Software fixes are never rushed out. They're always tested
properly amongst a range of qualified and experienced beta-testers. We won't ever

dump untested, untried software on our users.

ZEIT USER MANUAL

Introduction 7

Turn a knob or push a switch and the machine will respond instantly. ZEIT doesn't
play games and it doesn't use MSN Instant Messenger. But it does play

sequences and we think it plays sequences rather well.

ZEIT USER MANUAL

